
C++ Across Multiple
Platforms
A Guide to Cross-Platform Programming

[picture here]

C++ Across Multiple

Platforms
A Guide to Cross-Platform Programming

© 2007 Matthew D. Peavy

All Rights reserved. No part of this book may be reproduced, in any form or by
any means, without the express written permission of the publisher.

The author has taken care in the preparation of this book, but makes no
expressed or implied warranty of any kind and assumes no responsibility for
errors or omissions. No liability is assumed or implied for incidental or
consequential damages in connection with the use of the information, programs,
scripts, or ideas contained herein.

All product names mentioned herein are the trademarks of their respective
owners.

Library of Congress Cataloging-in Publication Data

Peavy, Matthew D.
......... C++ Across Multiple Platforms : A Guide to Cross-Platform Programming
......... QA76.xxxx

ISBN 0-xxx-xxxxx-x

Dedication

Summary of Contents

0 Preliminary Issues ... 1

1 Reasons .. 9

2 Benefits of Multiple Platform Development15

3 Costs of Multiple Platform Development 19

4 Platforms .. 27

5 Source Code Licenses31

6 Platform Specific Issues37

7 C++ Specific Issues ..39

8 Development Environment 43

9 Make ...45

10 Compilers ... 47

11 User Interface Programming 49

12 Embedded Programming 51

13 Cross-Platform Libraries53

14 Databases .. 55

15 Internet & Web Specific Issues 57

16 Graphics and Sound .. 59

17 Programming Tools ...61

18 Concurrent Versioning 63

19 Testing ...65

20 Debugging and Bug Tracking67

21 Installation and Documentation69

iii

iv

22 Web Services and Web Applications 71

23 Interfacing with Other Languages73

24 XML ..75

25 Emulators, Wine, and Virtualization77

A Cross-Platform Libraries and Web Sites79

B Cross-Platform Productivity Applications81

C Selected FOSS Cross-Platform Applications 83

D Where to Obtain Help 85

Bibliography ... 87

Contributors ..89

Acronyms ..93

Glossary ..95

Index .. 99

Table of Contents

0 Preliminary Issues .. 1
0.1 Welcome ..1
0.2 Version .. 1
0.3 Copyright and Distribution of this Book 2
0.4 Register this Book ..2
0.5 How to Use this Book ...2
0.6 How to Reference this Book .. 5
0.7 Updated Information and Links ..5
0.8 What to Contribute .. 6
0.9 How to Contribute ..7

1 Reasons ... 9
1.1 Reason for this Book ..9
1.2 Not a Java Killer ... 10
1.3 Multiple Platform vs. Platform Independent 11
1.4 Client-Side Applications Live On ..11
1.5 Platform Proliferation ...14
1.6 Because I Am Enthusiastic ...14

2 Benefits of Multiple Platform Development 15
2.1 Benefits for the Developer ...15
2.2 Benefits for your Employer or Client 16
2.3 For the Sake of Standards ... 17
2.4 For Future Compatibility ..17

3 Costs of Multiple Platform Development 19
3.1 Costs of Hardware and Software ... 19
3.2 Costs of Platform Administration ... 20
3.3 Costs of Additional Development Work 20
3.4 Costs of Additional Testing .. 21
3.5 Costs of Additional Deployment Mechanisms 22
3.6 Costs of Maintaining Projects ...22
3.7 Costs of Submitting Source Code Due to FOSS Licenses 22
3.8 Writing 90% Cross-Platform Code is Also Good 23
3.9 Additional Platforms are Cheap(er) 24

4 Platforms ... 27
4.1 Choice of Platforms ..27
4.2 Windows .. 27

v

vi

4.3 GNU/Linux ..28
4.4 Mac OS X ... 29
4.5 Solaris and OpenSolaris ...29
4.6 Other Unix Variants ... 29
4.7 Web or Browser Based .. 29
4.8 Embedded and Portable .. 29
4.9 Niche ... 30

5 Source Code Licenses 31
5.1 FOSS Licenses Pervasive ... 31
5.2 Review of Most Common Licenses ...31
5.3 Restrictions vs. Freedoms ..33
5.4 Dual-Use Licensing .. 33
5.5 Responsibilities Under FOSS Licenses 34
5.6 Strategies on Explaining FOSS to Clients / Managers 34
5.7 Contracts ... 35
5.8 Further Information ... 35

6 Platform Specific Issues 37
6.1 Prefer File-Based Preferences and Configurations 37
6.2 File Systems .. 37
6.3 I/O ..38
6.4 Sources of Platform-Dependent Behavior 38

7 C++ Specific Issues ...39
7.1 16, 32, and 64 Bit Platform Issues ...39
7.2 Determining the OS ...39
7.3 Platform-Specific System Calls .. 39
7.4 File Systems .. 40
7.5 Memory ... 40
7.6 I/O ..40
7.7 Linking and Libraries ... 41
7.8 Link vs. Binary Portability .. 41
7.9 Conditional Code and the Preprocessor 41
7.10 Platform-Specific Versions of Source Files 41
7.11 Multi-threading .. 41
7.12 Sources of Platform-Dependent Behavior 41

8 Development Environment 43
8.1 Standardizing on One Environment 43
8.2 Emacs / vi + tools ..43
8.3 Eclipse ... 43
8.4 Others ..43

vii

8.5 Issues .. 43

9 Make ..45
9.1 make and automake ..45
9.2 CMake ..45
9.3 Jam .. 45
9.4 NMake ..45

10 Compilers ... 47
10.1 Advantages of Using Multiple Compilers 47
10.2 Non-Compatibility Issues ... 47
10.3 gcc ...47
10.4 Microsoft Visual Studio .. 47
10.5 Borland .. 47
10.6 On-line Compilers .. 47

11 User Interface Programming 49
11.1 Console and curses ..49
11.2 wxWidgets ...49
11.3 QT ..49
11.4 VCL .. 49
11.5 XUL and Browser-Based UI Toolkits 49
11.6 Others (FLTK) ...49

12 Embedded Programming 51
12.1 Current Popular Embedded Platforms 51
12.3 Licensing Issues ...51
12.4 Specific Embedded Issues ... 52

13 Cross-Platform Libraries 53
13.1 Boost ... 53
13.2 Threading .. 53
13.3 Other libraries that isolate sub-systems (time, memory, etc) .
53
13.4 Unicode ..53
13.5 Peripheral abstraction ... 53
13.6 Microsoft's Services for UNIX (Interix) 53

14 Databases .. 55
14.1 Methods of Connectivity via C++ ..55
14.2 Database Connectivity and Licensing 55
14.3 Cross-Database Programming ... 55

viii

14.4 SQL Standardization and Fracture 56
14.5 Popular Commercial Databases ...56
14.6 DTL as Another Layer of Portable Abstraction 56

15 Internet & Web Specific Issues 57
15.1 Embeddable Browsers ... 57
15.2 Sockets ..57
15.3 CGI ...57
15.4 CORBA / MPI .. 57
15.5 SOAP ..57
15.6 Flash and Ming ...57

16 Graphics and Sound 59
16.1 OpenGL ..59
16.2 OpenSceneGraph and G3D ..59
16.3 Ogg and MP3 ... 59
16.4 Static Graphics .. 59
16.5 Browser Based Graphics ..59

17 Programming Tools 61
17.1 GUI Designers ..61
17.2 UML ..61
17.3 Code Profiles ..61
17.4 Code Generators ..61

18 Concurrent Versioning 63
18.2 CVS ..63
18.3 SubVersion .. 63
18.4 BitKeeper ...63
18.5 Visual SourceSafe ..63
18.6 Git ..63
18.7 Hosting Possibilities ...63

19 Testing ...65
19.1 Necessity for Cross-Platform Testing 65
19.2 Difficulty for Cross-Platform Testing 65
19.3 Resolution, Font, Layout ..65
19.4 Strategies for Automated Testing ..65
19.5 Testing tools (lint, etc) ...65

20 Debugging and Bug Tracking 67
20.1 gdb .. 67

ix

20.2 Other Debuggers ... 67
20.3 Bug Catching tools ...67
20.4 Bugzilla ...67

21 Installation and Documentation 69
21.1 Installers ..69
21.2 Various Help Doc Systems ...69
21.3 Programming Documentation ...69
21.4 DocBook .. 69
21.5 Technique for using same config files on multiple platforms ..
69

22 Web Services and Web Applications 71
22.1 Web Services Overview ...71
22.2 Web Services vs. Web Applications 71
22.3 .NET ...71
22.4 J2EE ... 71
22.5 Mono ..71

23 Interfacing with Other Languages 73
23.1 PPP Scripts (particularly via CGI) ... 73
23.2 Java / JNI .. 73
23.3 C .. 73
23.4 Fortran ...73
23.5 Basic (Power, VB, etc.) .. 73
23.6 Calls Through Memory ..73

24 XML ..75
24.1 Reasons for use ... 75
24.2 Why it aids in X-platform development 75
24.3 Data Display via XSLT ..75

25 Emulators, Wine, and Virtualization 77
25.1 Not actually cross-platform development 78
25.2 Wine .. 78
25.3 Other Emulators .. 78
25.4 Virtualization ... 78

A Cross-Platform Libraries and Web Sites 79
A.1 Libraries ...79
A.2 Web Sites .. 79

x

B Cross-Platform Productivity Applications 81
B.1 Office ...81
B.2 Internet and Mail ... 81
B.3 Graphics .. 81

C Selected FOSS Cross-Platform Applications 83
C.1 Office ...83
C.2 Internet and Mail ... 83
C.3 Graphics .. 83
C.4 Audio ... 83

D Where to Obtain Help 85
D.1 Books .. 85
D.2 Web sites .. 85

Bibliography ...87

Contributors ...89

Acronyms ...93

Glossary ...95

Index ... 99

0
Preliminary Issues

This chapter discusses a few necessary issues to get you started with
this book. Please take a moment and read through this chapter before
skipping ahead.

0.1 Welcome
Welcome to C++ Across Multiple Platforms, a book designed to help
you.

This is a non-traditional book in that it is a community supported
project. The book is available as a PDF download, and it will be
available in print form when finished.

This chapter contains preliminary information that is relevant to the
book and its continued development – meta-information of sorts. It is
strongly recommended that you read the following short sections
before continuing to the first chapter.

0.2 Version
The version of the book you are reading is 0.1.0a.

The date of publication for this version is 2007 Nov 26.

This information is important when checking out the Updated
Information and Links Section (see below).

An MD5 hash code for the PDF version is available on-line to verify
authenticity and fidelity to the original.

1

2 Chapter 0: Preliminary Issues

0.3 Copyright and Distribution of this Book
This book is under US copyright. In addition, it is available as a free
download from www.givemefish.com for personal use.

Personal use, as defined here, means use within a private, academic,
or non-profit organizational setting. In other words, use of this book
within a non-business setting is free. However, if this book is used at
work, within a business, or in the scope of a for-profit project, it
requires that the reader purchase a copy.

This book falls under the same restrictions as other copyrighted works
with regards to redistribution and copying. Limited copying for
academic reasons (e.g., handouts in class) is permitted of any
copyright work under the fair use doctrine.

This book may not be copied or distributed (in electronic or print
form). Although I allow free downloads from my website, this does
grant you the right to distribute or mirror this book without
permission.

I am making this freely available to the software development
community, without cost, for personal use. Please respect my rights
regarding copying.

0.4 Register this Book
0.4.1 Why Register
Why should you register this book? There are several reasons:

• Notification of updates

• Developer survey – by filling out the developer survey, you can help
...

0.4.2 How to Register
Here is how to register:

0.4.3

0.5 How to Use this Book
Each chapter in this book is fairly self-contained, meaning that it is
not essential that you read this book cover-to-cover. If you are only
interested in information covered in a later chapter, skip ahead.

For your convenience, a comprehensive index and glossary are

How to Use this Book 3

present at the end of this book.

0.5.1 C++ Sample
All C++ code samples will be in the following font in order to
distinguish code from the text in the book. Also, code is indented
from normal text to accentuate clarity. C++ comments are formatted
in italics to distinguish them from non-comment source code. For
example:

#include <iostream>
#include <cstdlib>

int main()
{

//Print hello and exit successfully

std::cout << “Hello world.” << std::endl;
return EXIT_SUCCESS;

}

0.5.2 Command Line
All command line user-input will be in the following format. A light
gray background is used to indicate command-line environment, and
user input is denoted in bold. A down-left error indicates a carriage
return. The user in this example types in two commands:

[matthew@localhost]$ ls↵
Development Documents Music GiveMeFish

[matthew@localhost]$ pwd↵
/home/matthew

0.5.3 User-Interface Navigation
User navigation of GUI's will follow this format:

$UPDATE THIS

Menu -> SubMenu -> Sub-subMenu

Button OK

Tab1 -> RadioButton check

4 Chapter 0: Preliminary Issues

0.5.4 Code Style
Code will follow style rules laid out in Sutter's book C++ Coding
Standards [Sutter05]. Classes, functions, and enumerations are
named ThisWay, variables thisWay, and private member variables
m_thisWay. Public member variables are simply relegated to the trash
bin.

Within functions, I have chosen to place the initial curly bracket on
the same line (directly following) the programming statement For
example:

if(result == true) {
cout << “Result is true. Updating data.”;
updateData();
return true;

}
else {

cout << “Result false. Exiting without update.”;
return false;

}

This choice is partly personal a preference and partly to reduce the
size of code examples. Although this is often leads to contentious
debate, to quote from Sutter regarding various bracket placement
styles, “Any professional programmer can easily read and write any of
these styles without hardship.” [SuttCUJ Oct 2004]

0.5.5 HyperLinks
HyperLinks within the electronic book are actually hyper. Links
within the printed version appear the following way:

$UPDATE THIS

Links from one section of the book to another are only visible within
the electronic version of the book and look like this:

$UPDATE THIS

0.5.6 Naming Conventions
There is a small feud within the free and open source software world
regarding names. There are two main points of debate:

1)How to refer to “free” and “open source” software.

2)Whether the operating system GNU/Linux should include GNU
within the name or not.

Both of these issues are semantic as well as philosophical as anyone

How to Use this Book 5

who has heard Richard Stallman can attest.

While not wising to entry the fray, I will refer to “free” (as in freedom)
as well as “open source” software as “free and open source software”
or FOSS. The practical differences between the two are largely
irrelevant for the material in this book. I will therefore lump them
together. Regardless of the name, a programmer must have a solid
understanding of the various licenses governing FOSS packages,
tools, and libraries. I would also guide the interested reader to the
GNU web-site $LINK for more information on important philosophy of
software freedom.

Regarding the name GNU/Linux, it is my feeling that the GNU
operating system is a significant piece of GNU/Linux and should
therefore be a part of the name.

0.6 How to Reference this Book
While you may have downloaded this book for free, the information
contained herein should be regarded as public domain. If you use this
book in a report, article, or book, it is your responsibility to cite the
information used.

Part of the decision of whether to release this book as a free download
stems from the desire for the widest possible distribution and
dissemination of the information. Referencing this book serves the
purpose of establishing it as a reputable source. Just as linking within
the web enhances the richness of ..., referencing ...

• Bibliographic reference:

Peavy, Matthew., ... 2004

• Hyperlink reference:

http://www.GiveMeFish.com/books

Thank you for your cooperation on this issue.

0.7 Updated Information and Links
As the software industry moves at an incredibly fast pace, some of the
information contained in these pages will likely be out of date by the
time you read it. Therefore I maintain a section on my website for
current information and links.

This information will be added to each new edition of the formal book.
All “update” information will be saved for each past edition.

Corrections are welcome! Please help me keep this information up-to-

6 Chapter 0: Preliminary Issues

date. Nothing is worse than a dead link. When you discover a
mistake, a dead link, or have a disagreement about any issue in this
book, inform me at your earliest convenience. The following two
sections discuss contributions.

Updated information can be found here: $UPDATE THIS

0.8 What to Contribute
There are lots of potential contributions that readers are encouraged
to make. The writing and wide-spread dissemination of this book will
be in large part thanks to the readers – the wonderful community of
software developers.

Please note that contributions may become part of this book in the
future. They will always fall under the same copyright rules as the
rest of the book. Your contribution will be available identically in the
future on-line and print versions. See the section on How To
Contribute (below) for information on recognition.

The following items are strongly encouraged:

1)Spread the word – when discussing issues with fellow developers
(whether in person or on-line), suggest this book. If a fellow
developer poses a question related to cross-platform development,
give him or her the link.

2)Link or reference this book – when you use the information in this
book, reference it so that others will know where to find the
information.

3)Send me typographical and non-current information – any time you
find errors, dead-links, or programming bugs, please submit these
to me.

4)Point out omissions of important tools and ideas – if you feel that I
have missed an important idea, tool, programming library, or
anything else, please let me know. There is a huge body of
programming tools and knowledge (and I certainly do not pretend
to know every tool and topic indepth). I am relying on your help to
give a complete and accurate portrayal of cross—platform
development.

5)Raise fundamental issues – I have tried to follow state-of-the art
coding and design practices for source code and application
implementation. However, if you feel that I am in error with
regards to a fundamental programming concept or style, or if you
think that I have recommend the misuse or misconfiguration of a

What to Contribute 7

software tool, let me know.

6)Translate some or all of this to another language – the more
languages we can translate this book in to, the wider its adoption
will be. Programmers will gain the most from this book if they read
it in a language with which they are most comfortable. If you have
the skills, please consider translating some or all of this book. I will
publish sub-section translations of this book as I receive them. So
don't feel that you have to translate the whole book (or even a
whole chapter) to contribute and see your results. Revisions and
corrections of translations are also encouraged.

0.9 How to Contribute
Contributions may be made in a number of ways: anonymously, under
a pseudonym, name attribution (potentially with contact information).

In all cases, the contributor must agree to the following stipulations:

• The work is original and not taken from another source; or, if
derived from another source, is properly and completely attributed;

• The contributed work may be included in whole or in part in all
future versions of this book without restriction;

• Any contributed code will be published under a BSD-style license;

• Code may be revised to clarify or make conforming to the standards
used throughout this book. The code will be available for review by
the original contributor before inclusion in order to allow the
contributor to forgo having his / her name associated with it (...in
other words, if you think I mangled your code to the point that you
are embarrassed to have your name associated with it, I will allow
you the opportunity to review and then decline attribution).

If you prefer to contribute anonymously, please indicate this in any
contribution contact. You may use your real name or email address
during contact with me, and I will guarantee not to reference this
information in the book. In order to guarantee the authenticity or
work (especially code), and to discuss any potential copyright issues, I
would strongly prefer to have some means of contact with an
anonymous contributor.

Pseudonym or screen name – same rules as for anonymous
contributing except that I will attribute the contribution to any name
or pseudonym you would like.

8 Chapter 0: Preliminary Issues

If you would like to be mentioned by name and / or contact
information (company name, address, URL, etc.), please forward me
the exact information you would like to have listed. I am, however,
restricting this to text only. So please do not send photos, logos, or
anything else that can not be typed.

All contributors will be recognized in the Contributions section at the
end of this book.

I am using the excellent OpenOffice.org Writer (www.OpenOffice.org)
to compose this book. Text contributions will be accepted in any open
format, e.g., OpenOffice.org (sxw or odt), Rich Text Format (rtf), or
plain text (txt). Contributions made in closed / proprietary formats
will be accepted. However, I cannot guarantee that I can open such
documents correctly.

Any code should be submitted in standard .cpp and .h files. They
should naturally be in standard C++ and (attempt to) follow the
coding style used in this book.

1
Reasons

This chapter covers some of the reasons why I decided to write this
book and the importance of multiple platform development.

1.1 Reason for this Book
What is the reason behind this book? I have had numerous
conversations with programmers regarding the platform-independent
possibilities of C++ programming. Many technologically aware
people are unaware that C++ can be a “write once – compile
anywhere” language. It is assumed that Java is the main cross
platform (or platform independent) programming paradigm.

This book addresses these issues in detail. It provides the reader with
ready information as to the tools, means and methods, costs vs.
benefits, and programming particularities necessary for successful
cross-platform development. It provides reasons for adopting
platform-independent standards. And it provides information for the
implementation of those standards.

Many Free and Open Source Software (FOSS) projects strive for wide
user adoptance. In fact, many FOSS projects gauge their success by
how widely the program is implemented. So it is natural to find FOSS
projects ported to many platforms. In addition, the FOSS community
has a tendency towards platform inclusion rather than exclusion, and
thus the desire exists from the outset to write FOSS projects in a
cross platform manner.

Far from being the sole domain of FOSS projects, however, cross
platform programming methods are also advantageous for proprietary
and commercial projects. Many of the same reasons FOSS project

9

10 Chapter 1: Reasons

leaders would development for multiple platforms are applicable to
proprietary projects. Most notably is, of course, an increase in the
target audience.

Being cross platform is also a means of “programming in the future
tense.” This view assumes that the long-term prospects of any one
platform is never guaranteed. And planning this in from the
beginning may be viewed as a wise long-term business choice. To
quote Scott Meyers: “Good software adapts well to change. It
accommodates new features, it ports to new platforms, it adjusts to
new demands, it handles new inputs. Software this flexible, this
robust, and this reliable does not come about by accident. It is
designed and implemented by programmers who conform to the
constraints of today while keeping in mind the probable needs of
tomorrow. This kind of software — software that accepts change
gracefully — is written by people who program in the future tense.”
[Meyers96]

Thus this book attempts to aggregate information, advocate for the
adoptance of, and aid in the implementation of cross-platform
development.

1.2 Not a Java Killer
...but close. Just kidding. This book is not intended to give the
impression that Java can be replaced by platform-independent C++.
The discussion amongst programmers who favor different languages
often elevates to a frenzied level of debate. The truth is, there is no
“one true language.” Java exists for specific reasons and should
continue to remain a programming platform in the future.

Everyone has, however, their preferred language. And for a lot of
industrial-level application programmers, C++ is that language. The
mistaken belief that C++ can only target a single platform has led to
more than one project being written in Java. This detrimental, since
an informed decision may lead to a better implementation within
C++.

With the information in this book, a C++ programmer can make the
case to an employer or client that C++ can indeed be used for that
multi-platform project.

In addition, if C++ has already been chosen as the language for
implementation, a programmer can make the case to plan in platform
independence from the outset. This is true, regardless of whether or
not the current (short-term) intention is for mono-platform

Not a Java Killer 11

deployment. Given an accurate view of the costs and benefits, an
employer or client may be persuaded to take the cross platform
development route even though this was not part of the original
development plan.

1.3 Multiple Platform vs. Platform Independent
Originally I decided to title this book Platform Independent
Programming in C++. I changed the name because I felt that the use
of the term “multiple platforms” better reflects the focus of the book.
A discussion of the difference between the two terms is justified.

Multiple-platform programming refers to programming in way that an
application is either expressly written for multiple or platforms, or
that it can be easily adopted for use on another platform. Multiple-
platform programming may mean that some changes are necessary in
order to port the program, but those changes should be relatively
painless.

Platform independent programming refers to the art of writing code
that runs on various platforms with essentially no change to the code.
This could mean that the source code is platform independent, or the
binary is independent (for example, POSIX compatibility), or
somewhere in between (such as byte code execution within a virtual
environment – the method of independence achieved in the Java
paradigm).

Both multiple platform and platform independent programming are
discussed in this book. While the latter term is more “independent”
(and therefore should be the preferred goal when programming), the
former is usually the only practical means for achieving multiple
platform execution. Some platform particularities are impossible to
abstract away, and thus platform specific tweaking is required.

A programming library is much more likely to achieve true platform
independence, unless the library is heavily file system or user-
interface related. Libraries should aim for true platform
independence.

1.4 Client-Side Applications Live On
Will every program eventually just be a web application, cobbled
together from smaller, interoperable, XML-enabled, leverageable,
scalable, grid-capable, enterprise-ready browser-accessible web
services? Hyperbole aside, the hype for web-services (and the related
business jargon that naturally follows suit) would have you believe

12 Chapter 1: Reasons

that.

It is important to differentiate between web-services and web-
applications. The web-services idea is to allow the creation of
modular programming entities (something along the lines of a
function or class object) that may be utilized over the Internet by
different programs. The supporting architecture (from security, to
directory look-up, to payments for use of the web-service) are
provided within the .NET and J2EE application architectures. In this
way, it is possible for programmers to “publish” their web-services
and allow them to be used (often times with a fee) by other programs
and programmers. It's something akin to renting out a function or
class library which resides on, and is called from, the Internet.

Web applications are something altogether different. A web-
application runs mostly on a remote server (though partially as
Javascript within the local machine) and is viewed within a local web-
browser. The application may be written in one or many languages
(with Perl, PHP, and Java being the most common). Web applications
may make use of web-services, but do not necessarily have to do so.
The emergence of AJAX has brought web-applications to a sufficiently
high level that they can now be considered an alternative to client
side applications. Witness the success of Google Apps.

Web applications have some very appealing attributes. They are
generally truly platform independent (with the exception being some
Internet Explorer specific applications, especially those relying on
ActiveX). They require no installation, take no client disk space, can
be upgraded (on the server) without the user's intervention or
attention, and can be viewed from any computer that has a browser.
In addition, a well written application can be compiled as a web
application running on a server or as a local application utilizing a
web-browser as the user interface. Web applications and browser
based UIs are discussed further in chapters $UPDATE THIS

Client-side applications will continue to exist and proliferate. There
are several reasons for this prediction and I offer them here:

• Not everyone is web-connected at every moment. Although this is
changing thanks to broad-band and wi-fi (and will increase
dramatically due to 3G and wi-max in the future), ubiquitous
computing is simply not guaranteed. This is especially true for the
business road-warriors and people who work in remote areas. If
they can't access their application at any moment desired
(especially their critical applications), then the delay in deployment
of true web-applications will be apparent.

Client-Side Applications Live On 13

• Not everyone wants to trust everything to a remote process. Some
people have serious privacy and security reservations about their
data, whether it be personal or professional. Entrusting all of that
sensitive data to an off-site, 3rd party web-service “somewhere” in
the world is scary to businesses and citizens alike.

• The current model is familiar and comfortable. People are often
adverse to change. The current model of local applications is
familiar and appears to work well. Why change this process? What
advantage, asks Joe user, is there to my word processor actually
existing on a server cluster in India? My lowly PC, says Joe, doesn't
ever break a sweat keeping up with my two finger hunt-and-peck
method of composing the morning's meeting agenda.

• Some client-side applications simply work better. Depending on the
needs of the application, client-side applications may simply fulfill
the needs of the user better. This is especially true where
transmission of a lot of data across slow networks is occurring,
where a lot of quick user-interaction is needed (low latency), where
the data is largely, entirely, and often only stored on the user's PC
already, etc.

• Development inertia. As with development for the ubiquitous
Windows platform, many applications will continue to be developed
in the manner that is most comfortable for the developer. And with
the skill set largely developed for local applications (and the
learning curve for many of the security, communications, and
authentication issues involved in web services steep), adoption by
application developers will not match the hype. It should be noted
that this same argument could be used to counter the reasons for
cross-platform development. It is hoped that this book will go some
way towards overcoming those obstacles.

• Web-service integration difficulties. While XML is touted as the
“cure all” for disparate data formats and incongruous data sets, it
simply does not solve the problems that many lay people have been
led to believe. Passing data between between different programs is
usually a daunting task. Slight differences in the way data is stored
and used means that large amounts of human intervention is
needed to make sure the right data is formatted in the correct
manner. Web services relies on the notion that this can somehow
be automated (largely through the use of XML and schemas). While
this may be the case for simple and well defined tasks (for example,
returning a postal “zip” code given a city and state), any larger and
more complicated task becomes exceedingly difficult. XML as a
means of automated data malleability is not the panacea that many

14 Chapter 1: Reasons

believe. The simple fact of the matter is that useful, generic web-
services will have a limited role in the construction of large,
complex, custom applications. Their reusablitiy will be far more
limited than people believe. Their reliability and accuracy will be
an issue (what testing steps will an “enterprise level” application
take to guarantee that a web-service is reliable? If the web-service
provider suddenly disappears, will the “back-up” web-service
provided be equally tested? Will things be guaranteed to work in
an exactly identical manner?)

Given the above points, I expect the development and deployment of
web-services and web-applications to be a long and slow process. The
demand for local versions of the same applications will likely remain
high.

1.5 Platform Proliferation
After years of consolidation for the Windows desktop platform, there
finally seems to be a loosening of Microsoft's grip. The venerable
Macintosh has made its comeback with OS X. GNU/Linux is on the
rise. And Unix still exists and will continue to exist for a long, long
time to come.

And then there are the portable and embedded systems that are
multiplying faster than one can count: mobile phones, PDAs, tablet
computers, and who knows what else coming down the pike.

It is probable that a useful application that currently runs only on
Windows will see demand on one of these other platforms in the near
future. We currently see major efforts underway to port enterprise
level applications to the Mac and GNU/Linux platforms. And stripped
down (mobile) versions of many useful applications will make their
way to mobile devices in the near future.

1.6 Because I Am Enthusiastic
The primary reason that I am writing this book is because I am
enthusiastic. I like the C++ language for development. I am excited
about GNU/Linux. I dislike closed systems and formats.

Because of these reasons, I am writing this book. I hope to share
some of my knowledge and enthusiasm and to help do my part to turn
this tide towards more open systems and more abundant, quality
software.

2
Benefits of Multiple

Platform Development

This chapter covers the numerous benefits of multiple platform
development. It is likely that you already have a good idea of the
benefits, and this chapter will only reinforce your already-held belief.
The points made in this chapter can also be invoked to persuade
bosses or clients that multiple platform development may make sense
for a particular project.

It is important that the benefits be weighed against the costs, which
are discussed in the next chapter. After reading these two chapters,
the reader should have a good idea whether multiple platform
development suits the project he or she is working on.

2.1 Benefits for the Developer
The benefits of multiple platform development are numerous. We'll
start with the immediate benefits that the developers will see.

2.1.1 Favorite Platform
First of all, developers have their own favorite platform. Those who
have developed on Windows for a decade may never want to leave the
sheltered environment of Microsoft Visual Studio. However many
developers dream about being able to boot into GNU/Linux at work
and unleash the power of Emacs on their code. While others have
taken to the Macintosh as a preferred platform.

If keeping the employee happy is one of the important jobs of a good
manager, then letting a programmer choose a platform is probably

15

16 Chapter 2: Benefits of Multiple Platform Development

one of the fundamental keys to that happiness.

2.1.2 More Tools
There exist a lot of tools that are platform specific. While many open-
source projects have been ported across several platforms, there
exists a large number of proprietary tools which are platform specific.
Windows has an extremely large number of development tools.
Increasingly these are tools that work with the Visual Studio compiler.

2.1.3 Larger Test Audience
When you want to distribute your application for testing, whether in-
house or in the wild, the more platforms you target, the greater the
testing.

2.1.4 More Thorough Testing
Multi-platform testing will stress your application in ways that you
may not intend. And this is a good thing.

For example...

2.2 Benefits for your Employer or Client
While it is fun to concentrate on the benefits that are directed to the
employee, in for-hire projects, it is really the employer or client who
must make major design decisions. Thus the employer or client must
be convinced that it is in his or her best interests to go cross-platform.

2.2.1 Larger User Base
Obviously the more number of people that can buy your product, the
better chances for success. Rise of GNU/Linux, Embedded, ???

There is a second important consideration when discussing platforms.
Some users will prefer one application over another if they have the
opportunity to use it on multiple platforms. This is true of people who
dual-boot in GNU/Linux and Windows, as well as people who have a
different platform at work than at home (think Unix at work and
Windows at home, or Windows at work and Macintosh at home). And
with the advent of virtualization, many people are running two
operating systems simultaneously.

The decision to purchase one piece of software over another can
easily be tipped by the fact that it is available for more than one
platform.

Benefits for your Employer or Client 17

In Appendix $LINK, I include a list of software that can be used for
various purposes that is explicitly cross-platform. This isn't
development software. This is regular productivity software. The
decision to use an application from this list may be made based solely
on basis that you can use this software on multiple platforms.

So playing the “installed OS” numbers game isn't the most accurate
way to gauge potential application adoption.

2.2.2 Better Image
A product that lists multiple platforms takes on a level of quality and
maturity in many peoples' eyes. Why is this so? Traditionally,
software targeted a single platform and was then ported after it was
determined that the market was established on another platform.
Recently it generally moves out from Windows to the other platforms.
Within the open-source world, it may move in the opposite direction,
starting as GNU/Linux only and ported to Windows. For scientific
programming, applications may have their roots in the various flavors
of Unix before moving away. And graphic design and multi-media
applications have always been a strong point for the Macintosh.

The porting generally happens only after a maturation period for the
application. When it finally reaches the multi-platform state, it is
usually a polished product.

In addition, a growing number of computer users feel strongly that
their platform should be supported. This is particularly true of the
GNU/Linux crowd, and to a lesser degree the Mac crowd. There is a
halo effect achieved by software distributors who have made the
effort to compile their software for a minority platform.

2.3 For the Sake of Standards
According to the old joke: The great thing about standards is that
there are so many to pick from. In reality though, standards plan an
essential role in defining a

Even if the application is never ported, it is

2.4 For Future Compatibility
Predicting what the next big platform will be is a fool's errand. At the
same time, we know that well written code lasts a long time. Thus the
most sensible decision we can make about future compatibility is to
write code that is as platform-independent as possible.

18 Chapter 2: Benefits of Multiple Platform Development

After this has been exhausted, we should aim to write code that is as
cross-platform as possible. Finally, any resulting platform
dependencies should be isolated and marked as such. This is the best
possible way to future proof your code.

3
Costs of Multiple Platform

Development

Multiple platform development does not happen by itself. It takes
planning, implementation, and testing. This additional effort is
manifested in cost. Costs may be monetary, which is the case in the
traditional software development world. Or the costs may come in the
form of increased development time.

Additional costs may be incurred in maintaining software licenses for
the various platforms and programming tools. Platform maintenance
and administration must also be included.

The costs of multiple platform development are substantially reduced
when the project is properly planned from the beginning. Many of the
design decisions that enable cross-platform development do not cost
anything additional themselves. Not choosing this path from the
beginning, however, can lead to significant costs if the program must
be retro-fitted to span multiple platforms.

An honest analysis of costs vs. benefits of multiple platform
development is essential for any project. This chapter will aid the
development team and/or management to evaluate these costs.

3.1 Costs of Hardware and Software
One of the easiest costs to quantify is the need for additional software
licenses. The licenses required for development may be extensive and
expensive or few and free.

The development environment and supporting development tools for
another platform may need to be purchased. In additional, licenses

19

20 Chapter 3: Costs of Multiple Platform Development

for programming libraries that you use may incur fee per platform.

In addition to the “one-time” costs of hardware and OS acquisition,
the most modern version of an OS is often the target platform. This
requires a future commitment to software upgrades that cannot be
forgotten.

If new hardware and operating systems need to be purchased, this
may be accounted for as a cost of the cross-platform development
requirements. However, the hardware may have additional benefits
and uses, and the cost may therefore be spread across different
projects or subsumed into overhead or capital expenditures.

Virtualization can help minimize the cost of new hardware, often at
the cost of increasing the software budget. A VMWare license may
cost far less than the price of a new computer, but it still does cost.

3.2 Costs of Platform Administration
Simply maintaining two or three different platforms can become an
expensive proposition for small software shops. The skills needed to
learn administration skill for different OS's is often significant.

In addition to the learning curve, the act of installing two (or more)
sets of development software, two sets of productivity software, and
patching two OS's for security updates is significant.

Very small software companies may leave this task to their own
employees. If each employee is responsible for administering two of
everything, then cost will be a significant percentage indeed.

Fortunately, system administrators can be hired for these purposes.
And knowledge of heterogeneous systems is becoming essential.

3.3 Costs of Additional Development Work
The largest overall cost of cross-platform development may be the
additional development work required. However, the cost of
additional development work is likely to be less than half of the
overall cost. The other costs presented in this chapter likely add up to
be greater than development work.

First off, two code lines must be maintained. This results in extra
back-ups and additional disk space. The amount of overhead involved
in tracking two code lines will affect all developers and especially the
manager of the project.

Costs of Additional Testing 21

3.4 Costs of Additional Testing
As a percentage of project budget, testing has been gaining since the
dawn of programming. Early projects were simple enough not to
justify large amounts of testing. But multiple programmers and large,
complex projects have demonstrated the need for significant testing
resources. Many new projects have settled on 1/3 of the total budget
just for testing alone $Reference.

The cost of testing for additional platforms cannot be forgotten. While
a large part of the computational aspects of a project should be
independent of the platform, most all of the UI and OS calls will need
to be tested.

3.4.1 Unit Testing
Unit tests are stand-alone tests that test one particular feature of the
application. These generally test functionality outside of the UI.
These should largely be unaffected by cross-platform development.
Properly written cross-platform code should test equally well under
multiple OS's.

3.4.2 UI Testing
This area of testing will be the most time intensive. UI testing is
already a difficult topic that is heard to automate. Must of the work is
done by hand, sometimes according to test scripts. UI testing is also
an essential piece of cross-platform development since so much of the
platform uniqueness exists within the UI layer.

Some test frameworks exist for UI testing. These should be used if
possible. More information is given in the chapter on testing.

Finally, the choice of a solid UI toolkit will aid the consistency of UI
development across multiple platforms, thereby minimizing the
testing needed.

3.4.3 Automation is Key
One of the keys to being able to successfully develop cross-platform
software is to automate as much of the testing procedure as possible.
As stated above, Unit Testing should be automated as completely as
possible. Any UI testing automation that is possible should be
implemented.

22 Chapter 3: Costs of Multiple Platform Development

3.4.4 Platform Specific Testing
There may exist areas of the code which are totally platform specific.
When one OS handles some functionality completely differently than
another, this portion of code should be tested explicitly. This will lead
to two different test cases. This, in turn, leads to separate lines of
code for the test suite. As discussed in the Costs of Additional
Development Work above, maintaining two or more separate lines of
codes increases the cost of the project.

3.5 Costs of Additional Deployment Mechanisms
Just as there are additional development and testing costs,
deployment is often times an overlooked and under-valued issue.
Installers for different systems may need to be written. This is
compounded by the problem that installation is extremely platform
specific. Thus there is oftentimes little re-use from one platform's
installation to another.

3.6 Costs of Maintaining Projects
Once a project has been written and released, it rarely remains static
for long. A release if usually followed by bug reports and then
patches. A client may request additional functionality or small
modification yielding different behavior. This is a normal part of the
software development cycle.

Any change on one platform must be implemented on the others. In
well designed cross-platform code, most such changes will only need
to be made in one place. But occasionally multi code lines will have to
be updated separately.

In addition, the changes must be tested on each platform. This will
occur regardless of whether the original implementation was in one or
more code lines.

Thus the additional costs due to on-going maintenance cannot be
ignored.

3.7 Costs of Submitting Source Code Due to
FOSS Licenses
When a developer modifies code within a FOSS library that exists
under certain licenses such as the LGPL, the developer is required to
submit those changes back to the original project. Other licenses
(such as the GPL) have more stringent requirements for making the

Costs of Submitting Source Code Due to FOSS Licenses

source code available. The submission or distribution of source code
has two costs.

3.7.1 Costs In Terms of Time Spent Submitting or Distributing
The developer may be required to expend time submitting code back
to the original project. This may seem like a trivial task, though it
does take time. One may have to register for an account (on
SourceForge, for example) or obtain a CVS login and password. The
developer may have to submit the code in a certain manner, which
requires some reading.

Perhaps portions of the project must be made available on your
website (as per the GPL). Someone is required to create the web
pages, make the code available (perhaps via CVS or Subversion, or
simply as a zip file).

And these tasks must be undertaken each time a release of the
software is made where the FOSS library has been modified. Thus
some bookkeeping overhead is required.

3.7.2 In Terms of Lost Exclusiveness of Code
Releasing code under a FOSS license could be viewed (especially be
management or accounting) as a loss of the exclusiveness of the code.
While you as a developer may view this act as a good thing, you may
be surprised by reluctance of the higher-ups in your company.

3.8 Writing 90% Cross-Platform Code is Also
Good
Is the process of cross platform code writing an all-or-nothing
endeavor? The answer to this is no.

3.8.1 Easy to Plan Ahead
It is easy to follow most or all of the steps in this book while only
developing for one platform. This means planning for eventual cross-
platform distribution at some point in the future, but not making the
up-front commitment to constantly develop on more than platform.

In doing so, you obtain several of the benefits mentioned in the
previous chapter without a lot of the costs mentioned in this chapter.

3.8.2 Path of Least Resistance
In fact, this method is probably the path of least resistance for

24 Chapter 3: Costs of Multiple Platform Development

introducing the concepts of cross-platform development into a
formerly mono-platform shop. The idea would be to push for as nearly
a platform-independent development as possible, without actually
developing on two platforms.

The actual job of porting can be finished at a later time. This pushes
the majority of the costs into the future. The costs are only incurred if
it is sure that deployment on multiple platforms is desirable.

3.8.3 The Danger
The danger lies in allowing certain platform dependencies to
surreptitiously invade the project. If you're not testing on multiple
platforms, you may not have any idea that this happening. For
example, the use (and then probable strong dependence on) a certain
3rd party library may bind needlessly to one platform. This is
especially true in the proprietary world, where libraries are severely
shackled by licenses and may only be released in binary form.

Once certain design decisions have become entrenched, they may be
prohibitively expensive to change later. Had the developers realized
(through multi-platform compilation) that a particular library was not
platform neutral, an informed decision could be made at that point as
to whether another library might be more appropriate. Other
“evasive action” such as wrapping the interface of a dependent library
might also be taken to compartmentalize the library. Pre-processor
directives or “build isolation” files could later be used for compile-
time platform dependencies.

UI libraries can be the biggest lock-in of all. The insulation of a
program from the UI is rarely well implemented. Much of the
underlying program is mingled with purely UI code such that they
become inextricably linked. If the UI being used is platform
dependent, then the game is largely lost. This is easily seen in the use
of Microsoft's .NET Managed C++. Not only is the UI platform
specific, the language extensions introduced with Managed C++ will
lead to code that is impossible to easily port later.

3.9 Additional Platforms are Cheap(er)
The additional expense of writing cross platform code for a third
platform is generally small compared to the expense of writing for a
second. Once the program has been ported to a second platform,
much of the work has been done. The second platform is proof that
the code is cross-platform.

Additional Platforms are Cheap(er) 25

The costs associated with the third platform should involve little extra
development. The additional costs will be incurred in platform
management, testing, and deployment. Depending of the tools used
for development, testing is likely to be the largest of these additional
costs.

4
Platforms

This chapter discusses the platforms that are targeted in this book, as
well as several other potential targets. Any platform that offers a
standard C++ compiler is a potential target. However, the user-
interface issues may limit platform choice to those which offer UI
tools.

4.1 Choice of Platforms
Deciding which platform(s) to support must be made on a case-by-
case basis. The costs and benefits of each must be carefully weighed.
In addition, platforms should be viewed with an eye towards the
future, as the industry is constantly changing. Disrupting
technologies emerge quickly and, as the name implies, disrupt the
status quo.

4.2 Windows
The obvious 800-pound-gorilla in the software industry, Microsoft
Windows is often the “main” platform targeted in desktop software
development. With a market share of upwards of 90%, neglecting
Windows means losing a significant number of potential customers1.

Windows is a somewhat nebulous term that engenders a large number
of different operating systems. Up through Windows 3.1, the
operating system was a 16 bit, non-multitasking operating system.
Windows 95 moved to 32 bits and multitasking. Windows is also used
as the name for Microsoft's server platform.

1 Customers in this sense means potential users, whether they purchase a license or
obtain the software without cost.

27

28 Chapter 4: Platforms

Desktop Windows development is inherently GUI based. There are
still a few console applications, which are discussed in the User
Interface chapter $LINK. However, the vast majority of Windows
programs are Win32 based.

The Win32 API may be accessed directly by the programmer. The
direct use of the Windows API was more common with the
predecessor Win16 API, largely before C++ was the dominant
language. As C++ UI libraries became popular, programming to the
Win32 platform largely fell out of fashion. This is due to the large
over-head needed to “hand code” menus, dialogs, and controls. GUI
toolkits abstracted a lot of the functionality and provided standardized
methods for Windows programming.

Microsoft Foundation Classes (MFC) became the nearly de facto
standard toolkit. Microsoft strongly promoted MFC and provided an
extremely powerful IDE which facilitated the use of MFC. MFC
included many non-standard C++ extensions and macros, thus
eliminating the possibility of writing easily portable MFC code.

Borland was another major player in the Windows application
development field. Their C++ Builder IDE was xxx

Development that targets the Win32 platform is not necessarily
platform dependent however. Because of the abstraction layer
provided by C++ GUI toolkits, a single source tree can be compiled
for Win32 as well as other platforms. This requires the choice of an
appropriate toolkit.

Win32 programs have an entry point called WinMain which takes the
place of the normal main(). Once inside this function, no other
requirements for interacting with the Windows OS are obligatory. ...

Windows is a multi-threaded operating system. Access to threading is
provided in MFC as well as the other major UI toolkits. $UPDATE
threading issues.

All versions of Windows since Windows 95 are 32 bit operating
system. Windows XP now accommodates 64 bit architectures, and
Vista (the most recent Windows release) also supports 64 bit
architectures.

4.3 GNU/Linux
GNU/Linux has come on the computer scene from an unlikely source.

Mac OS X 29

4.4 Mac OS X
The first computer available to the home user that boasted a graphical
user interface, the Macintosh has seen its fortunes wax and wane and
wax again. The Macintosh was instrumental in heralding the desktop
publishing revolution and has since become the platform of choice for
graphic artists.

The Macintosh has evolved greatly since its inception. Internally, the
Macintosh moved from Motorola 68000 series to IBM's Power series
of CPUs to the Intel x86 series. The operating system also evolved
from MacOS to the current OS X, which is a Unix based operating
system.

The Macintosh OS X operating system is based on the FreeBSD Unix
operating system. The Cocoa UI environment is Apple's native object-
oriented toolkit for the Macintosh. The theme Aqua is the current
default theme within the UI.

4.5 Solaris and OpenSolaris
I differentiate Solaris from the “other Unix” variants below because of
it's open source status. The platform is likely to attain a greater share
of developers.

4.6 Other Unix Variants
IBM's AIX and Hewlet-Packard's HP-UX are the tw

4.7 Web or Browser Based
Browser-based applications can be viewed as a platform unto
themselves. Whether the C++ portion of the program exists on the
local machine and uses the browser as an interface, or whether the
application is hosted on a remote server, the browser can serve as the
user interface to the application.

4.8 Embedded and Portable
The embedded and portable market is the next source of large growth
for computing. Mobile phones have long since surpassed PCs in
numbers ($REFERENCE). Their growth is continuing to accelerate,
especially in the heretofore sparsely targeted markets in the
developing work such as India and China.

With so much development potential, it would be foolish not to keep

30 Chapter 4: Platforms

an eye on this market as a possible platform for the future of your
application. Wireless connectivity is a given with these devices (the
raison d'etre for most of them). The computational power of these
devices is increasing rapidly, so as to make them viable platforms for
mainstream applications already this year.

Embedded and portable platforms present their own sets of problems.
Often times portable devices have small screens and limited input
devices, such as a simple phone keypad. Embedded devices may have
no real user interface at all. Most will face serious memory
restrictions, which means that an application ported to such a
platform must deal gracefully with any such memory issues. In
addition, battery life may influence the emphasis placed on quick
application shut down, saving intermediate or temporary data, and
atomic database and OS commits.

Portable devices are also beginning to surge. A raft of small, lightly
powered devices are making the presence know. These devices are
showing up as tablets and palm-top computers. They lack some of the
power and peripherals of laptop computers, but they support full
graphical interfaces and much of the same functionality.

The mobile phone market is quickly moving towards the “smart
phone” concept. Smart phones have very limited power compared to
modern PCs. But they are also starting to make use of modern OSs.

The top target platforms for this segment are currently SymbianOS,
Windows CE and Windows XP Embedded, Embedded Linux, PalmOS,
and VXWorks ($REFERENCE).

4.9 Niche
Niche operating systems include OS/2, Windows 3.1 and earlier
(including MS-DOS), mainframe OS's (such as IBM's z/OS and HP's
OpenVMS), Novel NetWare, etc.

These operating systems are generally not the sole target platform of
any new project. However, additions and modifications to existing
programs on such platforms occur relatively often. New application
development may also choose to support a niche platform at the
request of a client. Because most new systems acquisitions would
move away from these platforms, any development for a niche OS
benefits immensely from

5
Source Code Licenses

Source code licenses come in all shapes and sizes. This topic is large
enough to necessitate its own book. Many of the libraries and tools
used for cross-platform development are under FOSS licenses. The
probability of the use of multiple licenses within a single project is
extremely high. Therefore it is essential that this topic be explored to
a limited degree in this book. In addition, please see the section of
Further Information at the end of this chapter.

5.1 FOSS Licenses Pervasive
As stated in the chapter 1, FOSS licenses tend to be pervasive in the
area of cross-platform programming. Many tools and libraries that
can be used

5.2 Review of Most Common Licenses
The following is a non-exhaustive list of the most common types of
licenses. The proliferation of licenses, and the continually shifting
winds of development means that licenses will continue to come in
and go out of vogue.

5.2.1 Public Domain
This type of license is the simplest license. It states that the code is in
the public domain and may be used for any purpose whatsoever with
no restrictions. This code can be used in any manner, without
attribution, remuneration, or so much as a thanks (although developer
of public domain code also appreciate a thank you every once in a
while.)

31

32 Chapter 5: Source Code Licenses

Many government projects are licensed in the public domain as a
product of their funding source. Some hobbyists are also generous
with their code and publish it under a public domain license.

Public domain code is nearly always published “as is” and without
warranty.

5.2.2 Proprietary, Source Code Not Available
Proprietary licenses that do not provide source code are the most
common within the commercial software world. They often come in
the form of a pre-compiled library (.lib, .a, or .so file) and header files
(.h or .hpp files). The header files are necessary to expose the
programming interface, while the library implementation is hidden.

Proprietary licenses that restrict access to the source code are
generally for pay licenses. Payment is usually required on the basis of
per seat, per developer, site license, or per implementation sold.

While the access to the source code is restricted, the use of the library
is often unrestricted. You are essentially paying for the right to use
that library in whatever manner you want. This may be entirely
appropriate (or desirable) for commercial projects. FOSS projects
will likely not make use of these type of libraries, as the license may
be anathema to their sense of fairness or simply incompatible with the
license governing the rest of the project.

5.2.3 Proprietary, Source Code Available
Some proprietary license provide the source code to the underlying
library, generally under certain restrictions. Often the library code
cannot modified or used in any way outside of the library. The source
code can usually never be published or passed on. Payment schemes
and developers rights are generally the same under the two
proprietary schemes.

The benefit of having the source code to examine (and possibly to
modify) can be significant. The user may discover the cause of
seemingly unexplainable behavior or may be able to modify or extend
the library to accommodate some particular need.

5.2.4 Shared or Community Source Licenses
Shared source licenses have been spearheaded by Microsoft in the
last several years. Sun also publishes the Sun Community Source
License (SCSL), which has many similar features. Both licenses

Review of Most Common Licenses 33

5.2.5 GPL
The original and mostly widely used of the “free” software license, the
General Public License ushered in the FOSS movement. Verison 1 of
the unified GPL was published by Richard Stallman in 1989. Version
2 of the license was published shortly thereafter.

5.2.6 LPGL
The GNU Lesser General Public License

5.2.7 BSD

5.2.8 Apache

5.2.9 MIT

5.2.10 Mozilla

5.3 Restrictions vs. Freedoms
There is a grand debate within the FOSS community of restrictions
and freedoms when discussing such licenses. The FSF folks feel
strongly that there are certain freedoms that you have as a software
user and developer, and their licenses are there to protect your
freedom. The feel that by using other licenses, you are placing undue
restrictions on others.

The other side of the debate (let's call it the BSD side) feels that their
license provides the use with the ultimate freedom and flexibility to do
whatever the developer wants with the software without the onerous
requirements of publishing any source code. They view such
requirements as unnecessary restrictions to the use of their code.

While this debate will not be solved here, it is worthwhile to keep in
mind the two views.

5.4 Dual-Use Licensing
Certain projects are dually licensed. This gives the copyright owner's

34 Chapter 5: Source Code Licenses

greater flexibility in monetizing their software. The idea is to allow
certain users open source access to the code under one type of FOSS
license while being able to provide the code to another (paying) party
without any of the responsibilities of the FOSS license. In a nutshell,
a dual-use license says: if your project is open source, you can use the
library for free. If you wish to keep your project proprietary, you
must pay to use the library.

This type of licensing has become increasingly popular recently. The
advantage for the library owner is that the source code is open and
available to a lot of developers. This results in bug fixes and
improvements that the owner would not otherwise have.

At the same time, the owner can license his or her software for a
proprietary project and obtain some remuneration.

5.5 Responsibilities Under FOSS Licenses
You may have obligations by using or modifying a project licensed as
FOSS. Depending on the license, you may be required to mention the
use of the project somewhere, include the original copyright in your
code, publish source code modifications that you have made to the
library, or even publish the source code to your entire project.

Be aware of your responsibilities. You should not use any library for
which you do not understand the ramifications of the library. The
result could be contract or employment termination, a lawsuit, or the
forced open-sourcing of your code.

5.6 Strategies on Explaining FOSS to Clients /
Managers
If you make use of a FOSS licensed library, you will likely find
yourself explaining to your manager or your client what FOSS is. Do
not attempt to hide this topic or avoid having the discussion.

While the term “open source” has lost some of the stigma placed on it
by leery business types, it is still something can easily sour a
discussion. This is largely due to ignorance regarding the licensing
details. Many people unfamiliar with software understand there to be
exactly two licenses: “normal” and “open source”, and the latter is
something they won't have anything to do with.

The task is difficult. One can't simply suggest that the other party is
ignorant. The situation can be delicate.

I have found it best to explain what won't happen to your code. If you

Strategies on Explaining FOSS to Clients / Managers

are linking to a BSD or LGPL license, you can explain that none of
their code will be published.

Do not forget to inform your boss or client about the costs of using
FOSS either. In order for this to be a forthright discussion, a frank
discussion of the costs and responsibilities under FOSS licenses must
be made absolutely clear. Not doing so will likely land you in hot
water later on, with a strong reluctance to use FOSS again by your
boss or client.

5.7 Contracts
Contract programming involves the use of a contract program that
specifies a particular application or project to be written. Contracts
will spell out provisions for the projects such as minimum
requirements, development schedule, target platform, etc.

The contract you sign with a client should explicitly state any
responsibilities you have under FOSS licenses to re-publish code.
Clients are reluctant to see any of the code they paid for showing up
on a web-site, even though this may be your contractual obligation
due to a FOSS license. It is imperative to

5.8 Further Information
As stated at the beginning of this chapter, the topic of software
licensing is complex. The developer will likely have to delve further
into this topic than can be detailed here. Further information can be
found from the following sources:

● Software Licensing Handbook, by Jeffery Gordon [Gordon06].

● Understanding Open Source & Free Software Licensing, by Andrew
M. St. Laurent [St. Laurent04].

● Open Source Initiative (OSI)

http://www.opensource.org/

● Microsoft

http://www.microsoft.com/licensing/default.mspx

http://www.microsoft.com/slps

● Free Software Foundation

http://www.fsf.org/licensing

● Wikipedia

36 Chapter 5: Source Code Licenses

http://en.wikipedia.org/wiki/EULA

● Creative Commons

http://creativecommons.org/license/

6
Platform Specific Issues

This chapter deals with issues that relate to dealing with different
platforms. The issues raised in this chapter are independent of
programming, and therefore independent of the C++ language.
However, the developer must be aware of these issues and handle
them accordingly. The following chapter deals with C++ specific
platform issues.

6.1 Prefer File-Based Preferences and
Configurations

6.2 File Systems
6.2.1 Spaces and Special Characters in Names

6.2.2 Filename Length

6.2.3 My Documents, home, Mac(?), etc.

6.2.4 Case-sensitivity
Unix-based (including Macintosh) and Linux systems are case-
sensitive. Windows is not case-sensitive. The compiler will thus find
or fail to find included headers files based on the correct use of case
within a file name.

Fortunately for compiling, this is a compile-time issue. However, files
that are loaded at run-time with names that are hard-coded in source

37

38 Chapter 6: Platform Specific Issues

(or read from an external data source) will encounter the a similar
error. This error is much more pernicious, since the error can only be
detected at run-time.

Windows case-insensitivity is compounded by its desire to “make
users' lives easier” by automatically adjusting certain file names.
When creating a new all-caps directory or filename in Windows, the
user may be surprised to find the the name is suddenly all lower-case.
Despite the user's best efforts, that filename cannot be changed back
to all caps. Thus a header file whose name is an abbreviation and
might logically be all-caps (for example, “GUI.h”), will be kindly
renamed “gui.h” for you. Your include dependencies in Windows will
function perfectly, while Unix-based dependencies will cry foul.

6.3 I/O

6.4 Sources of Platform-Dependent Behavior
Despite all of the above (and following) advice, the programmer may
run into platform-dependent behavior. This may be simple to track
down, or it may be as elusive as the most difficult run-time error to
catch. Unfortunately, it tends to be more difficult than easy. The
following lists some of the more common sources of platform
dependence.

6.4.1 Order of Initialization
The order in which static and global variables is an important issue
and must be treated carefully and thoroughly.

7
C++ Specific Issues

This chapter deals with issues of platform dependency as related to
the C++ language specifically. As opposed to the previous chapter,
which dealt with language independent differences between
platforms, this chapter

7.1 16, 32, and 64 Bit Platform Issues

7.2 Determining the OS
Determining which operating system on which the program is
currently executing can be of use. The more often this is needed,
however, the less portable the code is. As that is the ultimate goal of
this book, it should be stated that as a rule of thumb, determining the
OS should be done as little as possible. This is the only sure way to
guarantee portability.

7.2.1 Compile Time Determination
Compile time determination of the OS is accomplished via pre-
processor definitions.

7.2.2 Run Time Determination

7.3 Platform-Specific System Calls

39

40 Chapter 7: C++ Specific Issues

7.4 File Systems
7.4.1 Use Boost::filesystem

7.4.2 Case-sensitivity
Unix-based (including Macintosh) and Linux systems are case-
sensitive. Windows is not case-sensitive. The compiler will thus find
or fail to find included headers files based on the correct use of case
within a file name.

Fortunately for compiling and linking, this is a build issue. However,
files that are loaded at run-time with names that are hard-coded in
source (or read from an external data source) will encounter a similar
error. This error is much more pernicious, since the error can only be
detected at run-time.

Windows case-insensitivity is compounded by its desire to “make
users' lives easier” by automatically adjusting certain file names.
When creating a new all-caps directory or filename in Windows, the
user may be surprised to find the the name is suddenly all lower-case.
Despite the user's best efforts, that filename cannot be changed back
to all caps. Thus a header file whose name is an abbreviation and
might logically be all-caps (for example, “GUI.h”), will be kindly
renamed “gui.h” for you. Your include dependencies in Windows will
function perfectly, while Unix-based dependencies will cry foul.

7.5 Memory
7.5.1 Memory Size
Being cognizant of the likely and (often unknown) absolute amount of
memory can be important. This is especially true when dealing with
porting to embedded devices, some which may not provide the
emergency “pressure release value” of virtual memory.

7.5.2 Virtual

7.6 I/O

Linking and Libraries 41

7.7 Linking and Libraries

7.8 Link vs. Binary Portability

7.9 Conditional Code and the Preprocessor

7.10 Platform-Specific Versions of Source Files

7.11 Multi-threading

7.12 Sources of Platform-Dependent Behavior
Despite all of the above (and following) advice, the programmer may
run into platform-dependent behavior. This may be simple to track
down, or it may be as elusive as the most difficult run-time error to
catch. Unfortunately, it tends to be more difficult than easy. The
following lists some of the more common sources of platform
dependence.

7.12.1 Order of Initialization
The order in which static and global variables is an important issue
and must be treated carefully and thoroughly.

8
Development Environment

Environment intro

8.1 Standardizing on One Environment

8.2 Emacs / vi + tools

8.3 Eclipse

8.4 Others

8.5 Issues
8.5.1 Tabs

43

9
Make

Make Intro

9.1 make and automake

9.2 CMake

9.3 Jam

9.4 NMake

45

10
Compilers

Compilers intro

10.1 Advantages of Using Multiple Compilers

10.2 Non-Compatibility Issues

10.3 gcc

10.4 Microsoft Visual Studio

10.5 Borland

10.6 On-line Compilers

47

11
User Interface Programming

UI intro

11.1 Console and curses

11.2 wxWidgets

11.3 QT

11.4 VCL

11.5 XUL and Browser-Based UI Toolkits

11.6 Others (FLTK)

49

12
Embedded Programming

Embedded Programming Intro

12.1 Current Popular Embedded Platforms
12.1.1 WinCE

12.1.2 Palm

12.1.3 Symbian

12.1.4 Linux embedded

12.1.5 ARM

12.1.6 WindRiver

12.2

12.3 Licensing Issues

51

52 Chapter 12: Embedded Programming

12.4 Specific Embedded Issues
12.4.1 Memory constraints

12.4.2 Limited / no viewing screen

12.4.3 Real time / performance constrained

12.4.4

13
Cross-Platform Libraries

Libraries intro

13.1 Boost

13.2 Threading

13.3 Other libraries that isolate sub-systems
(time, memory, etc)

13.4 Unicode

13.5 Peripheral abstraction

13.6 Microsoft's Services for UNIX (Interix)

53

14
Databases

Database intro

14.1 Methods of Connectivity via C++

14.2 Database Connectivity and Licensing

14.3 Cross-Database Programming

55

56 Chapter 14: Databases

14.4 SQL Standardization and Fracture
14.4.1 Popular FOSS Databases

14.4.2 MySQL

14.4.3 PostGreSQL

14.4.4 SQLite (embeddable)

14.4.5 BerkeleyDB

14.4.6 RemStar

14.4.7 Other Fully OpenSource RDBs

14.5 Popular Commercial Databases
14.5.1 MySQL

14.5.2 Oracle

14.6 DTL as Another Layer of Portable
Abstraction

15
Internet & Web Specific Issues

Internet and Web Specific Issues

15.1 Embeddable Browsers

15.2 Sockets

15.3 CGI

15.4 CORBA / MPI

15.5 SOAP

15.6 Flash and Ming

57

16
Graphics and Sound

Graphics and Sound intro

16.1 OpenGL

16.2 OpenSceneGraph and G3D

16.3 Ogg and MP3

16.4 Static Graphics

16.5 Browser Based Graphics
16.5.1 Vector Graphics

16.5.2 Flash

59

17
Programming Tools

Programming Tools intro

17.1 GUI Designers
17.1.1 wxWidgets (wxDesigner and DialogBlocks)

17.1.2 QT Designer

17.1.3 Techniques for using designers
Copying out code, member variables, documenting, directory for
projects, etc.)

17.2 UML

17.3 Code Profiles

17.4 Code Generators
17.4.1 YACC

61

62 Chapter 17: Programming Tools

17.5

18
Concurrent Versioning

Versioning intro

18.1

18.2 CVS

18.3 SubVersion

18.4 BitKeeper

18.5 Visual SourceSafe

18.6 Git

18.7 Hosting Possibilities

63

19
Testing

Testing intro

19.1 Necessity for Cross-Platform Testing

19.2 Difficulty for Cross-Platform Testing

19.3 Resolution, Font, Layout
19.3.1 Sizer Based Layout

19.4 Strategies for Automated Testing
19.4.1 Non-UI (should be mostly standard C++ anyway)

19.4.2 UI – command structure

19.4.3 File system / network related

19.5 Testing tools (lint, etc)

19.6

65

20
Debugging and Bug Tracking

Debugging intro

20.1 gdb

20.2 Other Debuggers

20.3 Bug Catching tools

20.4 Bugzilla
20.4.1 Advantages

20.4.2 Why not Visual Intercept

20.4.3 Hosting possibilities

67

21
Installation and Documentation

Intro

21.1 Installers

21.2 Various Help Doc Systems

21.3 Programming Documentation
21.3.1 Doc++

21.3.2 DOxygen

21.4 DocBook

21.5 Technique for using same config files on
multiple platforms

21.6

69

22
Web Services and Web Applications

Intro

22.1 Web Services Overview

22.2 Web Services vs. Web Applications

22.3 .NET

22.4 J2EE

22.5 Mono

22.6

71

23
Interfacing with Other Languages

Intro

23.1 PPP Scripts (particularly via CGI)

23.2 Java / JNI

23.3 C

23.4 Fortran

23.5 Basic (Power, VB, etc.)

23.6 Calls Through Memory
23.6.1 How-to

23.6.2 Dlls, libs

23.6.3 issues with memory

73

24
XML

XML Intro

24.1 Reasons for use

24.2 Why it aids in X-platform development

24.3 Data Display via XSLT

75

25
Emulators, Wine, and Virtualization

Intro

77

78 Chapter 25: Emulators, Wine, and Virtualization

25.1 Not actually cross-platform development

25.2 Wine
25.2.1 lib vs. emulation

25.2.2 Acceptable for already-written programs

25.2.3 Limitations (available for Win32-based programs)

25.2.4 Darwine

25.2.5 WineX / CrossOver

25.3 Other Emulators

25.4 Virtualization
25.4.1 VMWare

25.4.2 Parallels

25.4.3 VirtualBox

25.4.4 Linux Virtualization

25.4.5 Connectix (Win95/98 on Linux)

A
Cross-Platform Libraries and Web

Sites

Intro

A.1 Libraries

A.2 Web Sites

A.3

A.4

79

B
Cross-Platform Productivity

Applications

In order to be able to work comfortably on two platforms, not only
does one need the use of programming tools, but the rest of the work
environment must also be present on multiple platforms. This
appendix outlines non-programming applications that can be used on
multiple platforms.

B.1 Office

B.2 Internet and Mail

B.3 Graphics

B.4

81

C
Selected FOSS Cross-Platform

Applications

This appendix provides the user with selected FOSS applications that
make use of some of the libraries included in this book. This allows
the user to inspect the source code for cross platform applications.

C.1 Office

C.2 Internet and Mail

C.3 Graphics

C.4 Audio

83

D
Where to Obtain Help

Where to obtain help.

D.1 Books

D.2 Web sites

85

Bibliography
Sutter05: Herb Sutter and Andrei Alexandrescu, C++ Coding Standards.
Addison-Wesley, 2005.
Meyers96: Scott Meyers, More Effective C++. Addison-Wesley, 1996.
Gordon06: Jeffery I. Gordon, Software Licensing Handbook. Lulu.com, 2006.
St. Laurent04: Andrew M. St. Laurent, Understanding Open Source & Free
Software Licensing. O'Reilly, 2004.

87

Contributors

The following people have contributed to the creation and distribution
of this book. The contributors are loosely ordered by the
chronological order in which their contributions were received (not
necessarily the importance or my valuation of the contribution!)

I would like to once again thank all the contributors to this project.

Franz Von Asche

During a dinner in Paris discussing some technical issues, it was my
conversation with Franz regarding the cross-platform possibilities of
C++ that sparked the idea to write this book.

Jean Hollis Webber

Jean is the author of OpenOffice.org Writer, The Free Alternative to
Microsoft Word, which was used to guide me through the process of
writing this book in OpenOffice Writer. She personally answered
some questions regarding some formatting how-tos.

Robert D. Peavy

As well as being my father, Bob was the first to begin proof-reading
the text. Many grammatical and spelling mistakes were first
eradicated by Bob. He has also given me valuable advice on writing
style and striving for conciseness.

89

90 Contributors

Contributors 2

Contributors 91

Contributors 3

Acronyms

In order to help you better navigate the alphabet soup of TLA's, I have
provided a list of acronyms used in this book.

API - Application Programming Interface

ABI - Application Binary Interface

BSD - Berkeley Software Distribution

CGI - Common Gateway Interface

CPU – Central Processing Unit

FOSS – Free and Open Source Software

GNU - GNU's Not Unix

GPL – General Public License

GUI - Graphical User Interface

IDE - Integrated Development Environment

KDE - K Desktop Environment

LGPL – Lesser General Public License

MFC – Microsoft Foundation Classes

OS - Operating System

93

94 Acronyms

POSIX - Portable Operating System Interface

TLA – Three letter acronym

UI - User Interface

Glossary

Aqua
The windowing theme used in the OS X operating system.

API
Application Programming Interface – the interface that a software library or
service provides to an external user for interaction.

Berkeley Software Design / Distribution (BSD)
The

BSD License
The software license that governs the BSD project. The license is extremely
permissive in how the code may be used, mandating only that copyright
notices be maintained within the code.

Cocoa
The OS X's native object-oriented UI toolkit.

Common Gateway Interface (CGI)
A

Cross-Platform
Programmed for more than one platform; Multi-platform.

Curses
A text based UI based on ...

FreeBSD
A flavor of BSD

95

96 Glossary

Gnome
One of the two most popular windowing interfaces for the GNU/Linux
operating system, the other being KDE.

GNU
GNU is a self-referencing acronym which stands for “GNU's Not Unix”.

Graphical User Interface (GUI)
A graphical means for interacting with a user.

Integrated Development Environment (IDE)
A software package used for software development. IDEs incorporate many
discrete programming tools such as an editor, a compiler, a linker, and a
debugger. Other tools such as a versioning tool, a graphical dialog editor,
and a file differencing program may also be included. Some of the more
common IDEs include Microsoft Visual Studio, Eclipse, and DevC++.

KDE
One of the two most popular windowing interfaces for the GNU/Linux
operating system, the other being Gnome.

Linux
An

Longhorn
The codename for Microsoft's Vista operating system.

POSIX
A US government backed initiative to standardize the Unix operating system.

Recursive
See Recursive.

Unix
A good operating system.

User Interface (UI)
A means of interacting with the user. A UI may be graphical in nature (GUI)
or text based such as the Windows console or curses.

Vista
The name for Microsoft's latest operating system.

Win16
Windows

Glossary 97

Win32
Windows

X Windows
The X Windows windowing management system.

Index
3G 12
ActiveX 12
AJAX 12
Aqua 29
Borland 28
Cocoa 29
Code Style 4
Contribute

How to 7
What to 6

curses 49
CVS 23
Emacs 15
FOSS 5, 9
French, gratuitous use of 30
GNU 5
GNU/Linux 5
Google Apps 12
GPL 22
hash code 1
HP 30
IBM 30
J2EE 12
Java 9p.
LGPL 22
MacOS 29
Managed C++ 24
MD5 1
Motorola 29
MS-DOS 30
NetWare 30
Novel 30
OpenVMS 30

OS/2 30
PalmOS 30
PDF 1
Perl 12
PHP 12
POSIX 11
Power 29
QT 49
Reference

Bibliographic 5
How to 5
Hyperlink 5

smart phone 30
SourceForge 23
Stallman, Richard M. 5
Subversion 23
SymbianOS 30
Updated Information 5
Visual Studio 15
VXWorks 30
wi-fi 12
wi-max 12
Win16 28
Win32 28
Windows 3.1 27, 30
Windows 95 27
Windows CE 30
wxWidgets 49
XML 13
XUL 49
z/OS 30
.NET 12, 24

99

	0
Preliminary Issues
	0.1Welcome
	0.2Version
	0.3Copyright and Distribution of this Book
	0.4Register this Book
	0.4.1Why Register
	0.4.2How to Register

	0.5How to Use this Book
	0.5.1C++ Sample
	0.5.2Command Line
	0.5.3User-Interface Navigation
	0.5.4Code Style
	0.5.5HyperLinks
	0.5.6Naming Conventions

	0.6How to Reference this Book
	0.7Updated Information and Links
	0.8What to Contribute
	0.9How to Contribute

	1
Reasons
	1.1Reason for this Book
	1.2Not a Java Killer
	1.3Multiple Platform vs. Platform Independent
	1.4Client-Side Applications Live On
	1.5Platform Proliferation
	1.6Because I Am Enthusiastic

	2
Benefits of Multiple Platform Development
	2.1Benefits for the Developer
	2.1.1Favorite Platform
	2.1.2More Tools
	2.1.3Larger Test Audience
	2.1.4More Thorough Testing

	2.2Benefits for your Employer or Client
	2.2.1Larger User Base
	2.2.2Better Image

	2.3For the Sake of Standards
	2.4For Future Compatibility

	3
Costs of Multiple Platform Development
	3.1Costs of Hardware and Software
	3.2Costs of Platform Administration
	3.3Costs of Additional Development Work
	3.4Costs of Additional Testing
	3.4.1Unit Testing
	3.4.2UI Testing
	3.4.3Automation is Key
	3.4.4Platform Specific Testing

	3.5Costs of Additional Deployment Mechanisms
	3.6Costs of Maintaining Projects
	3.7Costs of Submitting Source Code Due to FOSS Licenses
	3.7.1Costs In Terms of Time Spent Submitting or Distributing
	3.7.2In Terms of Lost Exclusiveness of Code

	3.8Writing 90% Cross-Platform Code is Also Good
	3.8.1Easy to Plan Ahead
	3.8.2Path of Least Resistance
	3.8.3The Danger

	3.9Additional Platforms are Cheap(er)

	4
Platforms
	4.1Choice of Platforms
	4.2Windows
	4.3GNU/Linux
	4.4Mac OS X
	4.5Solaris and OpenSolaris
	4.6Other Unix Variants
	4.7Web or Browser Based
	4.8Embedded and Portable
	4.9Niche

	5
Source Code Licenses
	5.1FOSS Licenses Pervasive
	5.2Review of Most Common Licenses
	5.2.1Public Domain
	5.2.2Proprietary, Source Code Not Available
	5.2.3Proprietary, Source Code Available
	5.2.4Shared or Community Source Licenses
	5.2.5GPL
	5.2.6LPGL
	5.2.7BSD
	5.2.8Apache
	5.2.9MIT
	5.2.10Mozilla

	5.3Restrictions vs. Freedoms
	5.4Dual-Use Licensing
	5.5Responsibilities Under FOSS Licenses
	5.6Strategies on Explaining FOSS to Clients / Managers
	5.7Contracts
	5.8Further Information

	6
Platform Specific Issues
	6.1Prefer File-Based Preferences and Configurations
	6.2File Systems
	6.2.1Spaces and Special Characters in Names
	6.2.2Filename Length
	6.2.3My Documents, home, Mac(?), etc.
	6.2.4Case-sensitivity

	6.3I/O
	6.4Sources of Platform-Dependent Behavior
	6.4.1Order of Initialization

	7
C++ Specific Issues
	7.116, 32, and 64 Bit Platform Issues
	7.2Determining the OS
	7.2.1Compile Time Determination
	7.2.2Run Time Determination

	7.3Platform-Specific System Calls
	7.4File Systems
	7.4.1Use Boost::filesystem
	7.4.2Case-sensitivity

	7.5Memory
	7.5.1Memory Size
	7.5.2Virtual

	7.6I/O
	7.7Linking and Libraries
	7.8Link vs. Binary Portability
	7.9Conditional Code and the Preprocessor
	7.10Platform-Specific Versions of Source Files
	7.11Multi-threading
	7.12Sources of Platform-Dependent Behavior
	7.12.1Order of Initialization

	8
Development Environment
	8.1Standardizing on One Environment
	8.2Emacs / vi + tools
	8.3Eclipse
	8.4Others
	8.5Issues
	8.5.1Tabs

	9
Make
	9.1make and automake
	9.2CMake
	9.3Jam
	9.4NMake

	10
Compilers
	10.1Advantages of Using Multiple Compilers
	10.2Non-Compatibility Issues
	10.3gcc
	10.4Microsoft Visual Studio
	10.5Borland
	10.6On-line Compilers

	11
User Interface Programming
	11.1Console and curses
	11.2wxWidgets
	11.3QT
	11.4VCL
	11.5XUL and Browser-Based UI Toolkits
	11.6Others (FLTK)

	12
Embedded Programming
	12.1Current Popular Embedded Platforms
	12.1.1WinCE
	12.1.2Palm
	12.1.3Symbian
	12.1.4Linux embedded
	12.1.5ARM
	12.1.6WindRiver

	12.3Licensing Issues
	12.4Specific Embedded Issues
	12.4.1Memory constraints
	12.4.2Limited / no viewing screen
	12.4.3Real time / performance constrained

	13
Cross-Platform Libraries
	13.1Boost
	13.2Threading
	13.3Other libraries that isolate sub-systems (time, memory, etc)
	13.4Unicode
	13.5Peripheral abstraction
	13.6Microsoft's Services for UNIX (Interix)

	14
Databases
	14.1Methods of Connectivity via C++
	14.2Database Connectivity and Licensing
	14.3Cross-Database Programming
	14.4SQL Standardization and Fracture
	14.4.1Popular FOSS Databases
	14.4.2MySQL
	14.4.3PostGreSQL
	14.4.4SQLite (embeddable)
	14.4.5BerkeleyDB
	14.4.6RemStar
	14.4.7Other Fully OpenSource RDBs

	14.5Popular Commercial Databases
	14.5.1MySQL
	14.5.2Oracle

	14.6DTL as Another Layer of Portable Abstraction

	15
Internet & Web Specific Issues
	15.1Embeddable Browsers
	15.2Sockets
	15.3CGI
	15.4CORBA / MPI
	15.5SOAP
	15.6Flash and Ming

	16
Graphics and Sound
	16.1OpenGL
	16.2OpenSceneGraph and G3D
	16.3Ogg and MP3
	16.4Static Graphics
	16.5Browser Based Graphics
	16.5.1Vector Graphics
	16.5.2Flash

	17
Programming Tools
	17.1GUI Designers
	17.1.1wxWidgets (wxDesigner and DialogBlocks)
	17.1.2QT Designer
	17.1.3Techniques for using designers

	17.2UML
	17.3Code Profiles
	17.4Code Generators
	17.4.1YACC

	18
Concurrent Versioning
	18.2CVS
	18.3SubVersion
	18.4BitKeeper
	18.5Visual SourceSafe
	18.6Git
	18.7Hosting Possibilities

	19
Testing
	19.1Necessity for Cross-Platform Testing
	19.2Difficulty for Cross-Platform Testing
	19.3Resolution, Font, Layout
	19.3.1Sizer Based Layout

	19.4Strategies for Automated Testing
	19.4.1Non-UI (should be mostly standard C++ anyway)
	19.4.2UI – command structure
	19.4.3File system / network related

	19.5Testing tools (lint, etc)

	20
Debugging and Bug Tracking
	20.1gdb
	20.2Other Debuggers
	20.3Bug Catching tools
	20.4Bugzilla
	20.4.1Advantages
	20.4.2Why not Visual Intercept
	20.4.3Hosting possibilities

	21
Installation and Documentation
	21.1Installers
	21.2Various Help Doc Systems
	21.3Programming Documentation
	21.3.1Doc++
	21.3.2DOxygen

	21.4DocBook
	21.5Technique for using same config files on multiple platforms

	22
Web Services and Web Applications
	22.1Web Services Overview
	22.2Web Services vs. Web Applications
	22.3.NET
	22.4J2EE
	22.5Mono

	23
Interfacing with Other Languages
	23.1PPP Scripts (particularly via CGI)
	23.2Java / JNI
	23.3C
	23.4Fortran
	23.5Basic (Power, VB, etc.)
	23.6Calls Through Memory
	23.6.1How-to
	23.6.2Dlls, libs
	23.6.3issues with memory

	24
XML
	24.1Reasons for use
	24.2Why it aids in X-platform development
	24.3Data Display via XSLT

	25
Emulators, Wine, and Virtualization
	25.1Not actually cross-platform development
	25.2Wine
	25.2.1lib vs. emulation
	25.2.2Acceptable for already-written programs
	25.2.3Limitations (available for Win32-based programs)
	25.2.4Darwine
	25.2.5WineX / CrossOver

	25.3Other Emulators
	25.4Virtualization
	25.4.1VMWare
	25.4.2Parallels
	25.4.3VirtualBox
	25.4.4Linux Virtualization
	25.4.5Connectix (Win95/98 on Linux)

	A.1Libraries
	A.2Web Sites
	B.1Office
	B.2Internet and Mail
	B.3Graphics
	C.1Office
	C.2Internet and Mail
	C.3Graphics
	C.4Audio
	D.1Books
	D.2Web sites

